Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0059.v1

ABSTRACT

Introduction: This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. Methods: A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. Results: Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h with an HSA score of 52.8 and 28.6, respectively (p<0.0001). This data has been confirmed performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab, and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir up to the negativization. Conclusion: Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.


Subject(s)
Coronavirus Infections , COVID-19
2.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202206.0272.v1

ABSTRACT

Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic, however, the need for orally available antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using 5 two-fold serial dilution of compound concentrations ≤EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were conducted three times and in triplicate. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p<0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p<0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p=0.01) and 13.08 (p<0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro.

3.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202205.0381.v1

ABSTRACT

Newly emerging SARS-CoV-2 variants may escape monoclonal antibodies (mAbs) and antiviral drugs. By using live virus assays, we assessed the ex vivo inhibition of the B.1 wild type (WT), delta and omicron BA.1 and BA.2 lineages by post-infusion sera from 40 individuals treated with bamlanivimab/etesevimab (BAM/ETE), casirivimab/imdevimab (CAS/IMD) and sotrovimab (SOT) as well as the activity of remdesivir, nirmatrelvir and molnupiravir. mAbs and drug activity were defined as the serum dilution (ID50) and drug concentration (IC50), respectively, showing 50% protection of virus-induced cytopathic effect. All pre-infusion sera were negative for SARS-CoV-2 neutralizing activity. BAM/ETE, CAS/IMD and SOT showed activity against the WT (ID50 6,295 [4,355-8,075] for BAM/ETE; 18,214 [16,248-21,365] for CAS/IMD and 456 [265-592] for SOT) and the delta (14,780 [ID50 10,905-21,020] for BAM/ETE, 63,937 [47,211-79,971] for CAS/IMD and 1,103 [843-1,334] for SOT). Notably, only SOT was active against BA.1 (ID50 200 [37-233]) while BA.2 was neutralized by CAS/IMD (ID50 174 [134-209] ID50) and SOT (ID50 20 [9-31] ID50) but not by BAM/ETE. No significant inter-variant IC50 differences were observed for molnupiravir (1.5±0.1/1.5±0.7/1.0±0.5/0.8±0.01 μM for WT/delta/BA.1/BA.2, respectively); nirmatrelvir (0.05±0.02/0.06±0.01/0.04±0.02/0.04±0.01 μM) and remdesivir (0.08±0.04/0.11±0.08/0.05±0.04/0.08±0.01 μM). Continued evolution of SARS-CoV-2 requires updating the mAbs arsenal, however antivirals have so far remained unaffected.

SELECTION OF CITATIONS
SEARCH DETAIL